ResNet网络ResNet的亮点超深的网络结构(超过1000层)提出residual(残差结构)模块。使用Batch Normalization 加速训练(丢弃dropout)。为什么采用residual?在ResNet提出之前,所有的神经网络都是通过卷积层和池化层的叠加组成的。人们认为卷积层和池化层的层数越多,获取到的图片特征信息越全,学习效果也就越好。但是在实际的试验中发现,随着卷积层和池化层的叠加,不但没有出现学习效果越来越好的情况,反而两种问题:梯度消失和梯度爆炸梯度消失:若每一层的误差梯度小于1,反向传播时,网络越深,梯度越趋近于0梯度爆炸:若每一层的误差梯度大于1,反向传播时,网络越深,梯度越来越大退化问题随着层数的增加,预测效果反而越来越差。如下图所示为了解决梯度消失或梯度爆炸问题,ResNet论文提出通过数据的预处理以及在网络中使用 BN(Batch Normalization)层来解决。为了解决深层网络中的退化问题,可以人为地让神经网络某些层跳过下一层神经元的连接,隔层相连,弱化每层之间的强联系。这种神经网络被称为 残差网络 (ResNets)。ResNet论文提出
一只胖橘